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COMPUTATION OF THE UIISSIVITY OF A CYLINDRICALLY SYM1flTRIC LIGHT

SOURCE FROM MZASUR2MINTS OF TTL iROJ2CTED INTrINSITY PROILE

S.I. Herlitz

Institute of 1,hysics, Univorsity of Upps.ila

A method is described for computing the emissivity 444 )
of a cylindrically symmetric, oltically thin light source,

when the projected intensity jrofile 44(,)_ -f-"-+- is

known from experiment. The unknon function l*4 is taken as

a series exnansion in terms of orthogonal polynomials, and it

is shown how the expansion coofficients can be determined f4106,

L This procedure yields a least-squares smoothed approxi-
mation JP--(),

Let f(r) be the emission coefficient (emission per unit area) c-

a cylindrically symmetric, optically thin light source of unit radius.

Side-on measurements of the umission give the projected intensity liro-

file I(x), which is ralated to f(r) Thy

I~)f(r) dy - 2 (r..)r .r ',
I ( ( 1 l )

The inversion of eq. (i), ivinE f(r) in ter s of *(x), is

f(r) . . " (x-'" ) ( 2] _ (]...(12)

.( '" - " ' . x. _

The 1roblc:-, of iet ';An; f(r) "ih-n 1(xl _ -r.oi,:n fromc; ex:i- . nt

h,: bocn *:,eted b:" .vor-il cuthor.-, 1-3 mostly by scme method of qitri--

intefr.aticn. .An . u: nu.'.0 m th hI-, L,:n ,ivn by Bock; ,st n.2

/



2.

The x-axis is divided in a numbor of oqual int :-vals, and a third-degrac

polynomial is fitted to the I(x) curve within each interval. E. (2)

is used, and a matrix A; is obtained that transforms a set of valuum

of I to values of f,

f(ri) = Ai I(z). (3)

Bockasten also discusses the influence of random crrors in zlo valu ),-;

of I(x).

The method described in this note should be advantageous whenever

the I(x) curve has a more or less irregular shape, and a properly smooth.ed

approximation to f(r) is desired. The un'-novm function f(r) is e::Qa1dod

in a series of orthogonal polynomials. The expansion coefficient: can b-"

determined from I(x), and in this way a least-squares 'nocthed a: rox%-

mation to f(r) can be found directly.

A few general consequences of evs. (I) and (2' ar of intorest.

Obviously I(x) is an even function, and ;-. consider the inte-'vtiL

O4 (.1 only. The behavior of f(r) noar r- 1 iz vury sensitive to tl:

behavior of T(x) near x I . If I(x) .s proj~rtor-a1 to (1 -x)b

X 1, thtn f(r) will b- proportional to (l-r) -L  ncnr r!-I. ?c:

instaince, t = 0.,.9. ' r 0,5, and 1 = 0.51 c -orrpcrK to infinite, -.'n;

-nd zero vilu3. of f(1), reospectivcl.,. Further, it is s.,nc fr... (2)

that - discontiniit: .n I'(x) at x-0 imptioc Zn I':fir:.t- value of _k 0 ).

We will issume that 4P.o functio. -x) - .a f(r) "&zc finite, o

1(o) . 0, -adI ")= 0 (WiIh b .2j.

" n,; choose to fit in .v:- poly..o*:ial : : ), of e'r e , ,, f "

in s uch a "" t-t thQ orror squar(A, intoprrated over tho cro.r-- v:tic.i
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(f- f,,)2 r dr - min., M fixed. (4)

0

The orthogonal polynomials suitable for this purpose are the Le6ondro

polynomials 4 Pm(t), with t - 2r2- . The first few of these are

P0 - 1, P 1 2r2 -1 , P2 - 6 r 4- 6 r 2 + 1 = 20r6 _ 30 r 4 +12r 2 .1.

They satisfy the orthogonality relation

2(m+l) P Pn (2r2_ 1) p M(22_ i ) r = (5)

0

so that the series expansion of f(r) is

f(r) - am Pm2r2-1) (6)
m-O

with
1

am - 2(2m+1) f(r) Pm(2r2 _1) r dr. (7)

0

If the series (6) is terminated at m-M, the result is a 21.-du6ret

polynomial fM' which satisfies the condition (4).

We substitute the series (6) in eq. (1), intogr-ato term by ter:,

and obtain
x )

I(x)- 2(2mn4- a sin[(m+licos&1x (8N

or, putting x - cosQ,

I(cosQ) - 2(2m)+1a-'sin( 2+1)0.
m,=O

M-01

The functions 1n (x) v sin(n cos- x) are related to the Chabys,,,I

polynomials T (x) a cos(n cos x). They satisfy the orthoionality r
tion I '&fl(1 x ) dx - C, k-n, and vani,h at the points x - +

Un(x) is an even function if n is od-.4
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It can be shown from eqs. (I) and (7) that

2(2m+1)- 1 am n (4/) I(cosG) sin(2m+1 dN, (10)
-do

so that eq. (1) (with x - cosO) transforms the Legendre 'w- of f(:4"

into the Fourier series of I(cosQ) (odd sine terms only). It may be noted

that the total emission from tho light source is

2 i f(r) r dr - 20 I(x) dx :- 'a o . 011

0 0

It is also seen that, if fM(r) satisfies the condition (4), then the

corresponding function IMI(x) (the series (8) terminated at mwmD) Al]

be the "best? approximation for I(x), in the sense that the integral

I T i )-a dx

0

is minimized.

The standard methods of Fourier analysis 5 can now be used ft

determinin the coefficients %. One possible pr-cedure is ts fillowz:

The series (9) is terminatod at 3orao m =14

I N (COSe)= 2( 2n+I)" M :"n( '+1)i(2
110

'nd T_ is zequird Lo ccincide ;±th I in thov points in ;ti int,rv-lL

O.:g ffi2 v:hire the :'irst n geLto.'. tc:m (. nAr +3) vanishe-. Those

points .re

-nd the 1 4 is
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3 + 1 k f l _ _ _ _ _ _ _ o I . C 3

am 2 2m+1 N I(os ) sin ,2m )k~, m.0, 1.N (13)
m 2+3 k-i 29+3 2+3

This result can also be obtained by evaluating the integral (10) by the

trapezoidal rule. Eq. (13) is exact if f(r) is an even polynomial of

degree 2(N+I) or less, so that the series (6), (8), and (9) contain no

terms beyond m - N+1.

With the a given by eq. (13), the 2M-degree polynomial approxima-

tion for f(r) becomes

2 N+1

fM(r) - Z am Pm(2r -1) 1 _ Ak(r) I(cos k ) (14)

m-o k-1 2+3

where

- 1 (2m+1 ) sin (2+I P (r 2 -1). (14N) (15)

As dn example we consider the function

I - ( - x2)2 - sin 4Q, (16)

corresponding to

f(r) - (8/31)(1-r 2 )3"2 (17)

The coefficients a t computed from eq. (13), are listel in Table 1. The

exaict am, given by eq. (7) or (10) are entered in the last line. They aro

48 1 (18)am ii- (- r.--3)( 2m-1. m -) (- 2m

showing fairly rapid convergence. The convergence 14 slowest neir the

points r-O %nd r-l, ,,heIre IF o - 1. A seven-point analysis ('1-6) is

sufficient to reduce the error in f(r) to about 0.0006 for r-O and 0.001

for r-1.

Table 2 sloas the same for
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- - sin 2e, (19)

oorresponding to

f(r) - (2/) (1-r2)j. (20)

The exact coefficients a arem

a (2m-1)(2m+3) '

so that the convergence is fairly slow. Clearly, the behavior of the

function (20) near r-1 cannot be reprusented accurately by a low-do~ruo

polynomial. Ho-sever, a seven-point analysis (N-6) suffices to give an

error less than about 0.002 for r&0.98.

Experimental measurements will commonly yield I(x) curves with

irregular fluctuations, rather than smooth functions of the type (16)

or (19). In such cases it should be an advantage of this method that,

with a suitable choice of N and M, a properly smoothed f(r) is obtained

directly.

The influence of random errors in the values of I(x) can be found

as follows. If the error (standard Jeviation) of I at each point isAl,

eq. (13) gives for the error &a of am

2NN+2 -- 1  (AI)2 ~ j +2 2. 2

or

S2n+1,Ale (22)

For the function (19), assuming &I - 0.002 and I N 6, we see from eq. (22)

and Table 2 that the error in a is comparable to a5 itself, so that this

source of error is more important than the fairly slow convergenco of the

Legendre series.

From eq. (14), the error in f. is £iven by
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& 2 [Ak , (23)

which cannot be expressed in a simple form. We can obtain an ostimato

for At from the expression

'Z(m m(24)
m-o

whioh would be correct if the &am wore uncorrelated.AfM will be

largest at the points r-O and r-1, where IPmI - 1. We find from

eqs. (22) and (24),

1 A ( ) ) , r-O, 1. (25)3(2N+3)

For intermediate values of r, the error will be smaller, although no

2
simple formula can be given. For instance, for r w 0.5 and M - 6,

eqs. (22) and (24) yielddf6 - 5.9 x (2N+3)-I, while the end-point

value given by eq. (25) is 21 x (21+3)-iI. For M - 10 the factor is

9.0 and 42, respotively.
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Table I

Expansion coefficients am  of the function (8/3)(1 - r2)V2 , approximato

values from eq. (13) with N - 0, 1, 3, 6, and (last line) correct values

from eq. (18).

N a0  a1  a2  a3  a4  a5  a6

0 0.32476

1 0.33931 -0.44089

3 0.33957 -0.43660 0.08062 0.00951

6 0.33953 -0.43657 0.08083 0.01027 0.00306 0.00117 0.00046

(00) 0.33953 -0.43654 0.O8084 0.01029 0.00305 0.00124 0.00061

Table 2

Expansion coefficients am  of the function (2/1)(1 - r2) approximate

values from eq. (13) with N - 0, 1, 3, 6, and (last line) correct vwluo3

from eq. (21).

I a al a2 a3 a4 a5 a6

0 0.4330

1 0.4253 -0.2437

3 0.4245 -0.2538 -0.0580 -'.0216

6 0.4244 -0.2546 -0.0603 -0.0277 -0.0154 -0.0089 -0.0044

(04 0.4244 -0.2546 --.0606 -3.02P3 -C.0165 -').0109 -0.0077
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